Unable to view to the clustering results in rviz.
Hello, I am trying to perform euclidean clustering in ROS. I can generate data and also store them .pcd files. But i wish to see the output of the file in rviz which I am unable to. It throws the following warning:
[WARN] [1426601373.806774699]: Invalid argument passed to canTransform argument source_frame in tf2 frame_ids cannot be empty
My code looks like this:
ros::Publisher pub;
void cloud_cb(const sensor_msgs::PointCloud2ConstPtr& input){
sensor_msgs::PointCloud2::Ptr clusters (new sensor_msgs::PointCloud2);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>), cloud_f (new pcl::PointCloud<pcl::PointXYZ>);
pcl::fromROSMsg(*input, *cloud);
pcl::PointCloud<pcl::PointXYZ>::Ptr clustered_cloud (new pcl::PointCloud<pcl::PointXYZ>);
std::cout << "PointCloud before filtering has: " << cloud->points.size () << " data points." << std::endl;
// Create the filtering object: downsample the dataset using a leaf size of 1cm
pcl::VoxelGrid<pcl::PointXYZ> vg;
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>);
vg.setInputCloud (cloud);
vg.setLeafSize (0.01f, 0.01f, 0.01f);
vg.filter (*cloud_filtered);
std::cout << "PointCloud after filtering has: " << cloud_filtered->points.size () << " data points." << std::endl;
// Create the segmentation object for the planar model and set all the parameters
pcl::SACSegmentation<pcl::PointXYZ> seg;
pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane (new pcl::PointCloud<pcl::PointXYZ> ());
pcl::PCDWriter writer;
seg.setOptimizeCoefficients (true);
seg.setModelType (pcl::SACMODEL_PLANE);
seg.setMethodType (pcl::SAC_RANSAC);
seg.setMaxIterations (100);
seg.setDistanceThreshold (0.02);
int i=0, nr_points = (int) cloud_filtered->points.size ();
while (cloud_filtered->points.size () > 0.3 * nr_points)
{
// Segment the largest planar component from the remaining cloud
seg.setInputCloud (cloud_filtered);
seg.segment (*inliers, *coefficients);
if (inliers->indices.size () == 0)
{
std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
break;
}
// Extract the planar inliers from the input cloud
pcl::ExtractIndices<pcl::PointXYZ> extract;
extract.setInputCloud (cloud_filtered);
extract.setIndices (inliers);
extract.setNegative (false);
// Get the points associated with the planar surface
extract.filter (*cloud_plane);
std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size () << " data points." << std::endl;
// Remove the planar inliers, extract the rest
extract.setNegative (true);
extract.filter (*cloud_f);
*cloud_filtered = *cloud_f;
}
// Creating the KdTree object for the search method of the extraction
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
tree->setInputCloud (cloud_filtered);
std::vector<pcl::PointIndices> cluster_indices;
pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
ec.setClusterTolerance (0.02); // 2cm
ec.setMinClusterSize (10);
ec.setMaxClusterSize (2500);
ec.setSearchMethod (tree);
ec.setInputCloud (cloud_filtered);
ec.extract (cluster_indices);
std::vector<pcl::PointIndices>::const_iterator it;
std::vector<int>::const_iterator pit;
int j = 0;
for(it = cluster_indices.begin(); it != cluster_indices.end(); ++it) {
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
for(pit = it->indices.begin(); pit != it->indices.end(); pit++) {
//push_back: add a point to the end of the existing vector
cloud_cluster->points.push_back(cloud_filtered->points[*pit]);
cloud_cluster->width = cloud_cluster->points.size ();
cloud_cluster->height = 1;
cloud_cluster->is_dense = true;
std::stringstream ss;
ss << "cloud_cluster_" << j << ".pcd";
writer.write<pcl::PointXYZ> (ss.str (), *cloud_cluster, false ...
I haven't looked at this too closely, but I'd try making sure the
header
field of theclusters
cloud matches theheader
field of theinput
cloud. Is the conversion to PCL and back to PointCloud2 properly preserving the frame information?Thanks jarvis, I have done so. Its solved.
I just came back here to tell you that I was convinced that was the problem... glad to hear that it was an easy fix!