I adjust the configure, not it looks good.
frequency: 50
#sensor_timeout: 1.0
two_d_mode: false
transform_time_offset: 0.0
transform_timeout: 0.0
print_diagnostics: true
debug: false
# debug_out_file: /path/to/debug/file.txt
publish_tf: true
# publish_acceleration: false
smooth_lagged_data: true
history_length: 1.0
map_frame: map # Defaults to "map" if unspecified
odom_frame: odom # Defaults to "odom" if unspecified
base_link_frame: base_link # Defaults to "base_link" if unspecified
world_frame: odom # Defaults to the value of odom_frame if unspecified
# [X, Y, Z,
# roll, pitch, yaw,
# V_x, V_y, V_z,
# V_roll, V_pitch, V_yaw,
# ax, ay, az]
imu0: /rov/processed/ahrs/imu_madgwick
imu0_config: [false, false, false,
true, true, true,
false, false, false,
true, true, true,
true, true, true]
imu0_remove_gravitational_acceleration: true # the raw data is not removed
imu0_nodelay: true
imu0_differential: false
imu0_relative: false
imu0_queue_size: 100
imu0_pose_rejection_threshold: 0.8 # Note the difference in parameter names
imu0_twist_rejection_threshold: 0.8 #
imu0_linear_acceleration_rejection_threshold: 0.8 #
twist0: /rov/processed/dvl/twist_filtered
twist0_config: [false, false, false,
false, false, false,
true, true, true,
false, false, false,
false, false, false]
twist0_nodelay: true
twist0_differential: false
twist0_relative: false
twist0_queue_size: 20
pose0: /rov/processed/dvl/depth
pose0_config: [false, false, true,
false, false, false,
false, false, false,
false, false, false,
false, false, false]
pose0_differential: false
pose0_relative: false
pose0_queue_size: 10
pose0_rejection_threshold: 2 # Note the difference in parameter name
pose0_nodelay: true
# [ADVANCED] The process noise covariance matrix can be difficult to tune, and can vary for each application, so it is
# exposed as a configuration parameter. This matrix represents the noise we add to the total error after each
# prediction step. The better the omnidirectional motion model matches your system, the smaller these values can be.
# However, if users find that a given variable is slow to converge, one approach is to increase the
# process_noise_covariance diagonal value for the variable in question, which will cause the filter's predicted error
# to be larger, which will cause the filter to trust the incoming measurement more during correction. The values are
# ordered as x, y, z, roll, pitch, yaw, vx, vy, vz, vroll, vpitch, vyaw, ax, ay, az. Defaults to the matrix below if
# unspecified.
### set larger value for trusted sensor measurements
process_noise_covariance: [1e-8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1e-8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0.5, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0.5, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0.5, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0.3, 0, 0, 0 ...
(more)