TF issue with robot_localization
Hi, I'm fairly new to ROS. I'm trying to fuse wheel-odometry, GPS and IMU using robot_localization node. I'm attaching a rosbag which contains data published by the sensors. The car is essentially going in a circle. I've done sensor data publication exactly as specified by the robot_localization wiki. Yet the output of the robot_localization is incorrect and weird, it gives wrong Twist output data. I've already spent a week trying to solve this problem any help will be appreciated PS: data from all the sensors are pretty accurate, I've not added any noise to the sensors. The bagfile : link text TF tree :link text
Wheel-Odometry : child_frame_id = 'fusion/base_link' header.frame_id = 'fusion/base_link'
IMU: header.frame_id = 'base_footprint'
GPS: header.frame_id = 'fusion/base_link'
ekf_se_odom:
frequency: 30
sensor_timeout: 2
two_d_mode: true
transform_time_offset: 0.0
transform_timeout: 0.0
print_diagnostics: true
debug: false
map_frame: map
odom_frame: odom
base_link_frame: fusion/base_footprint
world_frame: odom
odom0: /fusion/odom
odom0_config: [false, false, false,
true, true, true,
true, false, false,
false, false, false,
false, false, false]
odom0_queue_size: 10
odom0_nodelay: true
odom0_differential: false
odom0_relative: false
odom1: odometry/gps
odom1_config: [true, true, false,
false, false, false,
false, false, false,
false, false, false,
false, false, false]
odom1_queue_size: 10
odom1_nodelay: true
odom1_differential: false
odom1_relative: false
imu0: fusion/imu/data_raw
imu0_config: [false, false, false,
false, false, false,
false, false, false,
true , true, true,
true, true, true]
imu0_nodelay: true
imu0_differential: false
imu0_relative: true
imu0_queue_size: 5
imu0_pose_rejection_threshold: 0.8 # Note the difference in parameter names
imu0_twist_rejection_threshold: 0.8 #
imu0_linear_acceleration_rejection_threshold: 0.8 #
imu0_remove_gravitational_acceleration: true
use_control: false
stamped_control: false
control_timeout: 0.2
control_config: [true, false, false, false, false, true]
acceleration_limits: [2, 0.0, 0.0, 0.0, 0.0, 3.4]
deceleration_limits: [2, 0.0, 0.0, 0.0, 0.0, 4.5]
acceleration_gains: [0.8, 0.0, 0.0, 0.0, 0.0, 0.9]
deceleration_gains: [1.0, 0.0, 0.0, 0.0, 0.0, 1.0]
process_noise_covariance: [0.05, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0.05, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0.06, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0.03, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0.03, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0.06, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0.025, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0.025, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0.04, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0 ...